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The intrinsic carrier concentrations, Fermi energies, and the electron effective masses are calculated

for Hg 1 ._Zn_Te with 0<x_<0.4 and 50 K_<T_<400 K. The numerical calculations are based on the

Kane k.p model and no further analytical simplification or approximation is made for the energy

band structure beyond those inherent in the Kane model. The results are compared to the previous

calculations. © 1997 American h_stitute of Physics. [S0021-8979(97)04005-X]

I. INTRODUCTION

For over a decade, HgZnTe has been considered as a

potentially superior infrared detector material due to its high

bond strength and material stability compared to HgCdTe._ 6

A major effort is being devoted to the growth of bulk crystals

and epitaxial layers of HgZnTe as well as their
characterizations. 7-13 Recent results on the HgZnTe devices

confirm the advantages predicted by theory of HgZnTe over

HgCdTe.14'15

Intrinsic carrier concentration is a quantity of fundamen-

tal importance to a wide range of solid-state material and

device applications. A precise knowledge of the intrinsic car-

rier concentration should benefit in understanding the perfor-

mance of HgZnTe detectors. The earliest calculation of the
intrinsic carrier concentration in Hg I _Zn_Te was carried

out by Shneider et al. I_ who used an energy gap relation,

E,e(x,T), as a linear function of alloy composition. In con-
trast to it, Dziuba et al. 17 described a nonlinear dependence

of the energy gap on composition from their optical and

electrical measurements. Recently, more accurate expres-

sions for Ee(x,T) have been reported by Sher etal. II and
Toulouse ei al. Is both from infrared transmission measure-

ments and the latter has been used by J6zwitowski and

Rogalski ]9 in the calculation of the intrinsic carrier concen-
trations and the electron effective masses in Hg, ,Zn_Te.

However, this particular calculation was based on an ap-
proximated solution of the well known Kane k.p model 2° for

the case of E_<A, where A is the spin-orbit splitting, which
is applicable only for the narrow band gap materials such as

HgSeTe. (For Hg_ ._Zn_Te, e.g., for x=0.2 and T--300 K,

E_---0.3 eV. compared to A=-I.0 eV.) The work I'_ subse-
quently adopted an expression given by Harman and
Strauss 2_ for calculating the electron concentration in which

the free-electron (parabolic) term in the energy dispersion

relation was neglected. For the calculation of the electron
effective mass, J6zwikowski and Rogalski adopted a relation

which was derived by Wright et al. 22 using a series of ap-

proximations including the one for sharp degeneracy which

ignores the statistical distribution of the electrons. The au-

thors presented results for two different electron effective
masses without appropriate interpretations. Given the restric-

tive nature of the approximations in their calculations and the

a_Universities Space Research Association. Current address: Digirad Corpo-

ration, 74(18 Trade St., San Diego, CA 92121-241[).

ambiguities in the differentiation between the two electron
effective masses, we felt another more exact and more spe-

cific calculation of these properties was merited.
In this work, the intrinsic carrier concentration and elec-

tron effective mass in Hg I _Zn,Te were numerically calcu-

lated. We adopt the procedures similar to those used by Su
et al. lbr calculating the intrinsic carrier concentrations in

Hgl..,Cdffe _3 which solve the exact dispersion relation in
Kane model for the calculation of the conduction band elec-

tron concentrations and the corresponding electron effective

masses. No approximation beyond those inherent in the k.p
model was used here.

II. THEORY AND CALCULATIONS

The nonparabolicity in the dispersion relation of the en-

ergy bands in the Kane k.p theory arises from the secular

equation describing the conduction, light-mass and split-off
valence bands,

e(e+Ee)(e+E_,+A)-k2p 2 e+Ee+ =0, (I)

where A and P, the momentum matrix element, are assumed

constant throughout the Hg I_`Zn_Te alloy system with the

only variable being E,, and the zero of energy, P,, is taken at
the bottom of the conduction band. For the conduction band,

the energy dispersion relation is written as

h2k 2
E= -- +e,,, (2)

2m

where m is the free electron mass and, for positive E_s, e, is

the largest root of Eq. (1). The density of states in the con-
duction band is then given by

k (h__+ I _,),:)e IN"(E)= _ . m L"
(3)

Since there is no identical root for Eq. (1), it can be shown

that Oe,./#k can be obtained directly from Eq. (1) by taking

derivative c_e/c_kand replacing e by e, . Thus,
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N,(E)-

where

U(e,)=-

v"U(E_) 'h2--+ 2P2 (e,.+Ee+2A)) l

8c(e,. + Eg)(e,c + Eg+ A)

2A

e,.+Eg+ 3

(4)

(5)

Z(e,,)=-(e,.+ Eg)(2e,,+ Eg+ A) + e,(ec+ Eg+ A) - U(e,,),
(6)

and Eq. (1) has been used to eliminate k.

The electron concentration in the conduction band is cal-

culated from

_ N,.(E)dE f_:

n= (' ' = (h21+exp E-EI] o
kT ] 7rZP m--

d

+ 2P2 [l+exp(E(e)-Ef')]z-_5 {e +G+ _-_-)) kr

de, (7)

where the subscript c of e has been dropped. With Eqs. (1),

(2), (5), and (6), integration (7) can be performed without

any approximation.

Since the contribution of the nonparabolic light-mass va-
lence band to the hole concentration is at least two orders of

magnitude less than that of the parabolic heavy-mass valence
band, 24 only the latter is used to calculate the valence band

hole concentration. Thus, we have

[2m*kTt v2 [-Ef-Eg.]
p=4"n'l_] FII21 kT ]' (8)

where Fu2(x) is the Fermi-Dirac function.
The energy gap in eV for Hg l_xZn.Te as a function of

composition and temperature given by Toulouse et al., 18

Eg (x, T) = - 0.3 + 3.24 × I 0- 2 ,¢Ux+2.73 lx - 0.629x 2

+0.533x3+5.3× 10 4

× (1 - 0.76,_- 1.29x) T, (9)

was used for the calculations. A similar relation given by

Sher et al.ll shows a weaker composition dependence and

gives a value of Eg(0.4, 300 K) about 13% lower than that by
Eq. (9) while coincides with the latter at x=0.095 and
T=300 K.

For negative Eg, i.e., semimetal, Eg+A and Eg+2A/3
25 bshould be replaced by A and 2A/3, respectively, and Eg y

IEgl in Eqs. (1), (5), (6), and (7) and Eg in Eq. (8) should be

replaced by zero.

lected for each x and T such that changing to a higher value

did not essentially affect the calculated result and that the

integrand, at this upper limit, had decreased to less than one

half of one thousandth of its maximum. This upper limit

corresponds to a conduction band energy that ranges from 11
kT for x=0.1 at 400 K to 97 kT for x=0.4 at 50 K above the

calculated E_(x,T). The E_ was considered to be solved
when IMp-11< 10 -4 was satisfied. The calculated intrinsic

carrier concentrations in semiconductor Hgl_xZn_Te as a
function of temperature for various compositions in the

range 0<x_<0.4 are plotted in Fig. 1. The differences in the
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III. INTRINSIC FERMI ENERGY AND CARRIER
CONCENTRATION

The intrinsic Fermi energy, E_ can be solved numeri-

cally by equating n given by Eq. (7) and p by Eq. (8). Using

the calculated E_, either Eq. (7) or (8) can be used to calcu-
late the intrinsic carrier concentration, n i . Same band param-
eters were assumed as those used in the recent calculation for

electron mobilities in Hg l_xZn.Te: 24'26 A=0.95 eV,

P =8.2× 10 s eV cm, and m_' = 0.6 m, where the value for A

is the average of those found in literature) 9'27 During the

calculation, the upper limit of e in the integral (7) was se-
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FIG. 1. Calculated intrinsic carrier concentrations in Hg x _,Zn_Te as func-

tions of temperature. The x value is 0.06 for the upper most curve and, with

a 0.02 interval, in an ascending order for the other curves from the top to

bottom, as indicated by the labels.
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TABLE I. Differences in the intrinsic carrier concentrations between the current and previous calculations.

T 350 K 300 K 250 K 2(1{) K 15(I K

x This work Ref. 19 % This work Ref. 19 % This work Ref. 19 % This work Ref. 19 9; This work Ref. 19 9;

0.1 1.33X1017 1.21XI0 t7 10 9.65xl016 8.75X10 j_' 10 6,60><:10 I_ 5.86×1() j¢' 13 4.16xI0 I*' 3.48×10 I_ 20 2.31xI0 _" 1.95×10 > 18

0.2 8.00XI0 t5 6.96X|0 t5 15 3.16XI0 Is 2.76x1015 14 9.18XI0 H 8.11X1014 13 1.57xI01"_ 1.37×10 p_ 15 9.59x10 I: 7.3(1'<10 j-_ 31

0.3 2.96X1014 2.60XI0 I'* 14 5.88X10 I_ 5.21X10 I_ 13 6.49X10 =2 6.15X1012 6 2.59xl0 I] 2.23×10 I_ 16 1.38X 10'_ 1.1(1× l(I '_ 25

0.4 1.01XI013 9.22×10 I' 10 1.0t×10 I-' 9.12X1() lj 11 4.25xI0 m 3.97X10 m 7

intrinsic carrier concentrations between the present calcula-
tion and that in Ref. 19 at several x and T values are listed in

Table I. The numerical data for Ref. 19 were scaled from the

plotted curves. The previous results are consistently lower by

10%-15% and more so at lower temperatures. Even when

using exactly the same values for band parameters A and P

as in Ref. 19, the present results are still about 7%-25%

higher than those previously reported. The temperature de-

pendence of the reduced Fermi energy, E_/kT, for the intrin-
sic semiconductor material is shown in Fig. 2. The figure

indicates that intrinsic Hg_ ._Zn_Te remains nondegenerate

for x value greater than about 1).2 for the entire temperature

range.

IV. NEAR THE BAND CROSS-OVER

As suggested by Eq. (9), the energy band gap in

Hgl_,Zn_Te decreases with temperature and approaches

zero at 334, 211, and 68 K for x=0.06, 0.08, and 0.1, respec-

tively. Below these temperatures, the band gaps, defined as

I'6-F s, become negative and F s becomes the conduction

band for these compositions. For x =0.04, the band gap stays

negative for the entire temperature range of calculation. AlL

ter the cross over, the effective energy gap remains zero.

Figure 3(a) and 3(b) show the calculated intrinsic carrier
concentrations and reduced intrinsic Fermi energies, respec-

tively, for those compositions near the band cross over. The

curves reflect two competing mechanisms that are present
near the band cross over as temperature decreases: (a) de-

creasing temperature tends to confine the electrons to near
the band edge and (b) the closing band gap makes the ther-

mally activated electrons easy to occupy the higher levels in
the conduction band. The intrinsic carrier concentrations

seem to be not affected by the band cross over indicating that

mechanism (a) has the predominant influence on their behav-

ior throughout the entire temperature range. The intrinsic

Fermi energies for these compositions are pushed well into

the conduction band due to the large density of states in the

heavy-mass valence band and E'I/kT keeps increasing with
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FIG. 2. Calculated reduced Fermi energies for the intrinsic Hg I ,Zn,Te as

functions of temperature. The r value is 1).06 for the upper most curve and,

with a 0.02 interval, in an ascending order for the other curves from the top

to bottom, as indicated by the labels near the curves or on the right margin.
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FIG. 3. Calculated intrinsic carrier concentrations (a) and reduced intrinsic

Fermi energies (b) as functions of temperature for Hg t _Zn,Te with

0.04_<__<0.1. The arrows in plot (hi indicale the temperatures 'ahere the

band cross over occulted.
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FIG. 4. Calculated transport electron effective masses as functions of alloy

composition for Hg I ._Zn,Te al 300 K. Each curve is calculated at the Fermi

energies corresponding to a fixed n -p value as indicated by the labels. The

bottom curve is the band-edge values for the property.

decreasing temperature before the band cross over, reflecting
a stronger effect of mechanism (b). After the cross over,

mechanism (a) comes into play and eventually, by overcom-

ing the effect of mechanism (b), reverses the direction of
i

change. (The actual Ef values decrease.) For x=0.04, the
Fermi energy decreases with decreasing temperature.

V. TRANSPORT EFFECTIVE MASS

In general, the expression for the electron effective mass

that appears in the description of transport phenomena is
. h2k(dE/dk)- l for a given energy band E(k)given by m e =

with arbitrary nonparabolicity. 28 It is also referred to as sus-

ceptibility effective mass 22 or cyclotron effective mass. 29

From Eq. (2), we have

* ( mO_c]'me 1 + (10)
ok]

* whichJ6zwikowski and Rogalski 19adopted a relation for me

was derived by Wright et al. 2z from the Kane model using a

series of approximations for the case of semimetals and

small cartier concentrations. Among those approximations,
the Fermi-Dirac distribution for the conduction band elec-

trons was replaced by a step function, the electrons were
treated as occupying all the states inside a sphere in k space,
and constant electron levels, n, were used instead of the

more meaningful n- p. In this work, no approximation was

made in calculating the effective mass from the Kane model

and the Fermi energies that correspond to given n-p values
were used in the calculation. For a given energy E, Eqs. (1)

and (2) were first used to solve for e, and k, which were
subsequently used in evaluating the derivative in Eq. (10).

Figure 4 shows the electron transport effective masses

calculated at the Fermi energies corresponding to different

levels of the net carrier concentration, n-p. Calculations

were performed at T=300 K and only for those compositions

at which the Fermi energy is within the conduction band. To

solve the Fermi energies corresponding to a given n-p = N

value, the Ef in Eqs. (7) and (8) was varied until
[n-p/N- 1[< 10 4 was satisfied. Comparing to the results in

Ref. 19, one can notice the difference in the shape of the

curves, especially for the low net carrier concentrations (n

-p) on the right-hand side of the band cross over, where the

Fermi energies fall below the conduction band edge and the

semimetal approximations do not hold. At large net carrier
concentrations, where direct comparison can be made (since

n-p-_n for N_>1018), the exact calculations given here
* values that are about 7%-10% smaller than thoseyield m e

given in Ref. ! 9. Of particular interest, the electron transport
effective mass at the bottom of the conduction band, given

by

* amP 2 _+__l.5Eg ]-'m_°- 1+ for Eg>0, (11)
m _ Eg(A+Eg)] '

and

* 4mp2 ] J
me°m- 1+_] , for Eg<0, (12)

is also shown in Fig. 4 as a function of composition.
In Ref. 19, the parabolic equivalent density-of-states ef-

fective masses were calculated for compositions as low as

x =0.12 for 50_< T_<350 K, where the presumption of nonde-

generated semiconductor in deriving the quantity became in-

valid, rendering the density-of-states effective mass mean-

ingless. It should be noted that the density-of-states effective

mass has no inherent physical significance and its main util-

ity is in simplifying the formalism for the computation of n i .

Vl. SUMMARY

Intrinsic carrier concentrations, intrinsic Fermi energies,
and electron effective mass were calculated for the

Hgl_xZnxTe alloys in the range of 0<x<_0.4 and 50

K_<T_<400 K. Unlike previous calculations, no approxima-
tion to the band structure, and hence to the density of states,

was made beyond those inherent in the Kane k.p theory. The

Kane secular equation was solved numerically and the exact

energy dispersion relation for the conduction band was used

in calculating the carrier densities. The previous calculated
intrinsic carrier concentrations 19are about 10%-30% lower

than obtained here. The difference is believed to be a result

of the approximation made previously to the energy band

structure. The first order derivatives of the energy dispersion

relation from the Kane model was derived analytically with-

out any approximation. The calculations included the band
cross-over region where band interactions have large effects

on the carrier concentrations, Fermi energies, and the effec-

tive mass of the alloy system.
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